Skip to main content
HOME   |   ABOUT   |   NEWS   |   TECH ARTICLES   |   AT THE TRACK   |   REVIEWS   |   VIDEOS   |   CONTACT ME

Chevrolet 1LE & Grand Sport - How do they do it? Part 2




GM, in general, is starting to build a very strong reputation for chassis engineering but Chevrolets, in particular, have very strong performance on track these days, not just good handling feel and fun to drive attitude. In Part 1 (link: Chevrolet 1LE & Grand Sport - How do they do it? Part 1), I looked at different aspects and concluded that Chevys appear to have the advantage in grip. If you are still unsure that grip is where those cars excel, perhaps this number will change your mind: 1.11. That's how much lateral forces, measured in g, the 2017 Camaro SS 1LE generated in Turn 1 of Virginia International Raceway (VIR) during Car and Driver's Lightening Lap 2016 feature. 1.11 g also happens to tie the 2014 Viper TA, the 2014 Ferrari F12 Berlinetta, and even the 2016 Ferrari 488GTB. It gets more interesting too..


Car Max Lat-g
2015 Chevy Corvette Z06 1.20
2017 Chevy Corvette Grand Sport 1.19
2009 Mosler MT900S 1.16
2015 Chevy Camaro Z/28 1.16
2015 Porsche 918 1.16
2015 Nissan GT-R NISMO 1.15
2016 Dodge Viper ACR 1.15
2016 Porsche 911 GT3 RS 1.14
2015 Lambo Huracán LP610-4 1.13
2014 Ferrari F12 1.11
2014 SRT Viper TA 1.11
2017 Chevy Camaro SS 1LE 1.11
2016 Ferrari 488GTB 1.11


If you pay attention to the order, you'll notice that the list isn't arranged in order of age or model year - i.e. starting with the Camaro, being 2017, then the 488GTB, being a 2016, then the Viper and F12, both 2014 cars - or vice versa. Despite all being listed at 1.11 g, the order goes F12, Viper, Camaro, and 488GTB; two 2014's, a 2017, and a 2016. Unless you want to believe it was random, that must mean that if you look at more decimal places, the Camaro beat the 488GTB and was beat by the F12 and Viper. That's a humble pony car beating a purpose built, mid-engine (new) Ferrari in grip.

It also places 12th out of every car ever tested in Lightning Lap features. The tally adds up to 201 cars and this Camaro beats 189 of them, including cars like the 458 Italia, 911 Turbos (pick a generation, it beat them all), 991 GT3 (non RS). Cars that beat the 2017 SS 1LE include stuff like the GT-R Nismo, Viper ACR, 911 GT3 RS, Porsche 918, you get the picture. Going further up the hall of fame, you find that three of the top 5 cars are Chevys, taking 1st (Z06), 2nd (Grand Sport), and 4th (fifth gen Camaro Z/28). The Mosler MT900S managed to just barely beat the Camaro (both are listed at 1.16 g, meaning they must be separated by a few 1/1000th's), but everything else is beat by the top dog Corvettes. I think I rest my case that Chevy knows grip. And it's easy to see why Chevy focused on grip.

If you can't grip the road properly, you can't put down power, you can't brake as aggressively, you can't carry speed through turns, etc. That's why everyone who's been around a track a few times will tell you that tires are one of, if not the most, crucial piece of the going-fast puzzle. If you have good tires, generally resulting in better grip, any individual under-performing aspect of a car doesn't necessarily have the same effect on others. For example, a low-powered car doesn't necessarily mean it's slow - it could have great brakes, great handling, great downforce, or any combination. Not having much power hurts acceleration, but the brakes can still do their job slowing the car down, suspension can do its job keeping tires in contact with the road, aero components can still generate downforce to increase grip at high speed, etc.

Even within one aspect such as handling, for example, you could have a car that understeers on entry - a bad handling characteristic - but it could very well be good at putting power down. You could still be quick if you slow it down, turn it, nail the apex, and hammer the throttle. Tires, on the other hand, can single handedly ruin all aspects of a car setup and prevent ALL of them, simultaneously, from performing properly if not chosen well and grip is compromised. Conversely, they can improve every single aspect of the car, if maximized. The question then becomes this: how do they generate more grip? It isn't compound because, while they do use good tires, they don't use anything more aggressive than what other manufacturers use (aside from manufacturer specific tuning).

To try and figure out where Chevy's stand out in any one area, or if they do at all, I looked at Lightning Lap numbers in more detail. I collected data from the last three Car and Driver's Lightning Lap features about each car, including lap time, front and rear wheel and tire sizes, front and rear track widths, power, torque, and weights. Then, I trended a bunch of different parameters about the cars vs lap times to see if I find any correlations pointing to a Chevy advantage. First, look at this graph of lap times at VIR during C&D Lightning Lap features vs power to weight ratios (expressed here in the inverse, lb/hp ratio) for the cars.




This isn't relevant to figuring out how those Chevys go quicker, but I just want to establish trust between you and data, if you're someone who isn't used to looking at empirical data, and making observations and conclusions, without knowing all factors. Generally speaking, cars with better weight to power ratios are faster. You probably already know that. But if you didn’t and you had no idea how power and weight affect a car, you’d look at that graph and say that as this weight-to-power ratio number goes down, lap times go down. Here's another graph.




This one is of lap times vs weight distribution over the front wheels wheels (i.e. the lower the number, the less weight there is on the front axle and tires as a fraction of curb weight; more rear weight bias). You could also look at the lap times vs weight distributions and say that front end heavy cars tend to be slower and as you move weight to the rear wheels, cars tend to be quicker. You could make this correlation, and the above between power-to-weight ratio and lap times, while all other factors are unknown - some of which are actually crucial to the going fast puzzle - just by looking at the test data. And you'd be right. With that in mind, can we use the data for more? Even without a deep dive into suspension geometry and roll centres, torsional stiffness, spring and damping rates, etc., can data point to a Chevy advantage, in the suspension or otherwise? Stay tuned for the conclusion tomorrow in Part 3 Chevrolet 1LE & Grand Sport - How do they do it? Part 3!


Comments







Does An Aftermarket Grille Really Increase Airflow?
I put a Saleen S281 grille to the test to answer that question.

Stock Suspension S197 Mustang With Square 305/30/19's
What you need to fit a proper size square tire setup.

How Limited Slip Diffs Make You Faster on Track
What you need to know about how they put power down and pros and cons.

Can Telemetry Explain Schumacher's Talent?
A comparison between Schumacher's and then team mate Herbert's data.






Cayman GT4 Track Review
The first Cayman with proper (911-challenging) power.

Is an EcoBoost Mustang any good on Track?
Two days at the track in a Mustang short 4 cylinders.

2016 BMW M4 DCT Track Review
It's quick (properly quick). But is it fun?

Can a stock Golf Diesel handle a Track Day?
Not your every day track beater.




🔥 Most Visited This Week

Michelin Pilot Super Sports vs Firestone Firehawk Indy 500 - Street Review

I've been a huge fan of Michelin PSS tires and exclusively bought them for the Mustang over the last four years. So how did I end up here? This year, I was hugely interested in trying an "R-comp" tire. I had my eyes set on Bridgestone Potenza RE-71R's for two simple reasons: price and reputation. Although not a true "R-comp" tire on paper, it performs like one by the account of every single test and review I've read (down to wear rates...). They seem like they're easily the most affordable (from a big brand) R-comp tire and combine that with a reputation for having tons of grip, it was an easy top contender. I had my concerns, though. For one, I'm told and have read that they are an autox tire, not really designed for high speed, pressure, and temps associated with open track. For another, the Mustang is a heavy car (as far as track cars are concerned) being roughly 3,800 lb. (including driver), which will amplify the unwanted open track loads.…

Michelin PSS vs Firestone Indy 500 - Track Review

A couple of weeks ago, I posted my first impressions of Michelin's PSS vs Firestone Firehawk Indy 500 tires. I've run PSS's for several years on the Boss, but I'm trying the Indy 500's for the first time. In short, I was worried about the narrower tires (I was running 285/35/18 PSS but could only find the Indy 500 in 275/35/18) and tread squirm, but I was happy with them up to that point just driving on the street. I had the chance to drive on them for three track days now. So what were they like? After my first session, they made an impression that basically persisted for the rest of track sessions on them. Phenomenal, unmatched value. Now, if value is something that stands out above all else, it typically means the compromise between qualities you want and those you don't is less than ideal, but the value is attractive. This is no different. I'll start with the bad, which really boil down to two: ultimate grip and grip longevity.

Grip is noticeably lowe…

The Truth behind Owning a Modified Ferrari 458 Italia

After driving and reviewing this modified 620 hp Ferrari 458 Italia, I talk to the owner to find out the truth behind owning and living with a modern Ferrari. This isn't a garage queen Ferrari either, it serves double duty as an every day car and track car. Watch to find out ownership costs, reliability, and experience. Interested in joining Scott at the track? Check out MHPDC.

Liked this? Make sure to subscribe so you don't miss new videos!



Follow Rams Eye The Track Guy on Facebook and Instagram!






View this post on Instagram
A post shared by Michael R (@ramseyethetrackguy) on May 21, 2019 at 5:17pm PDT

Stock Suspension S197 Mustang With Square 305/30/19's

If you've had any doubts about whether or not they will fit, fear not! You absolutely can run square 305/30/19's. I had a lot of doubts before pulling the trigger, even more so when the wheels where on the car. The tires do poke out a bit and I figured rubbing is all but guaranteed at full compression but I couldn't be happier I trusted APEX and those on here who have run it.

Here's what you need:

1. Camber plates: I have MM C/C plates and they are maxed out at -2.3 deg with the stock struts. I have been running them for years with many track days without issue.

2. 1"/25 mm spacer: I have Motorsport-tech 1" spacers and they look like high quality units. There is maybe a 1/4 inch clearance in the back so you can't go any narrower than 25 mm. http://www.motorsport-tech.com/adaptec/car/ford_s and you want Design 2.


3. Elongated studs: your best bet is to get the FPP hubs with elongated studs instead of reusing the old one. Bearings are consumables anyway so…