In Parts 1 and 2 (Links: +Chevrolet 1LE & Grand Sport - How do they do it? Part 1 & Part 2 ), I concluded that grip is where Chevys excel and decided to try and figure out how they do that by looking at test data from Car and Driver's Lightning Lap features. The first thing that stood out to me when the 5th generation Camaro 1LE came out was the wider tires compared to the Mustang Track Pack of the time and even the Boss 302. The tires on the ZL1 and Z/28 stood out as much.. only on those, they stood out compared to just about anything that isn't a supercar. So I decided to start looking there; tire sizes. To evaluate tire sizes, I calculated a weight-to-tire-section ratio for each car. Similar to the idea of power to weight ratio, where the number tells you how much weight each hp is burdened with, this tells you how much weight each mm of tire section is burdened with, so to speak. For example, a BMW M235i weighs 3,490 lb, as tested during the LL feature. It
BMW M2 equipped with an eLSD - BMW © A few weeks ago, I posted about traditional clutch-type limited slip diffs (LSD's) and how they work. You can read about those in the previous post: How Limited Slip Diffs Make You Faster on Track . But as you might know or have learned from reading the article, they aren't without their faults, which means engineers are always working to get around those limitations. You may not be surprised to learn that something like the Ferrari 488 GTB doesn't use a traditional limited slip diff, but it's not limited to super cars, far from it. Cars like the Golf GTI, the Civic Type R, various Mustangs, Corvettes, and BMW M cars, and even the Lexus RC F and GS F, all avoid a traditional limited slip diff in favour of one of these technologies. To keep things simple, I'll focus on two wheel drive vehicles. The vast (vast) majority of principles apply to all and 4 wheel drive vehicles, but there are some subtle differences that I'll