Skip to main content

How Limited Slip Diffs Make You Faster on Track

SADOKIST's (eSports Host) E46 BMW M3 GT3 Race Car - Kevin Doubleday ©

Over the years, I've found that limited slip diffs (LSD's) are some of the least appreciated performance parts you could get (or upgrade) for a car. LSD's make a big difference, though, because they can vastly improve how early you can get back on the power and, therefore, how good your corner exit is.

That last bit is very important if you're driving on track and want to get a good lap. You don't have to just take my word for it, though. F1 royalty Sir Jackie Stewart puts an emphasis on the importance of corner exit. When Captain Slow was sent to him to cut 20 seconds off his lap time (Top Gear Season 8 - Episode 5), Sir Jackie told him: "the exit of the corner is FAR more important than the entry of the corner, with regards to smoothness."

Sir Jackie Stewart coaching James May in a TVR Tuscan - Top Gear Season 8 Episode 5

You really need to nail the exit. And to get a better appreciation for and understanding of LSD's, you first need to know how open diffs work and where they fall short. If you're not sure, brush up on Differentials 101 in my recent post about Why An Open Diff Doesn't Work On Track. I won't get too much into the working mechanicals of a typical LSD, just the principles and how it affects the car.

How does it work?

The most common LSDs have traditionally been mechanical (i.e. no electronic wizardry) with a limited slip mechanism to resist one slipping wheel. That is slowly starting to change now, but these ones are still very common. They are typically open differentials at heart with modifications or additions (although some are more complex than that). Those modifications are designed to resist a speed variance across the differential. The result is a limit to how much faster one wheel can spin relative to the other, overcoming the limitations I mentioned for an open diff.

Ford Performance Trac Lok LSD - American Muscle ©

An example would be a set of clutch packs that progressively engage when there is a speed variance across an axle (i.e. one wheel is spinning faster than the other). The clutch packs progressively engage to transfer more torque to the wheel with more traction, thereby limiting slip. Another example is using a viscous fluid that effectively gets "thicker" as one wheel excessively spins, virtually locking half-shafts to the diff case.

Carbon Disc Clutch Packs (pair) Rebuild Kit for Trac Lok Diff - American Muscle ©

There are other types too but, in essence, the differential is locking the two half-shafts/wheels together to an extent. That extent depends on the design and specification of the differential - typically referred to as a percentage (%) number and occasionally as a Torque Bias Ratio (TBR). Remember in the last post about open diffs when I said an open diff provides virtually equal torque to both wheels? The % number and bias ratios mean LSD's can distribute torque unevenly side-to-side, which is what you want.

The Power Struggle

The % number is the difference in torque (in % of total) the diff can provide between the two axles. A 25% LSD, for instance, can provide the side with more traction 25% of the total torque and the rest is split equally. That means that one wheel can get up to 62.5% of total torque if it has more traction, instead of always getting 50% with an open diff. Equally as important, the low traction wheel only gets 37.5% of total power instead of 50%, so you don't overpower it as easily.

Spec E30 BMW 325i clearly demonstrating weight transfer mid corner with the inside front wheel lifted clean off, the reason you want to take advantage of more grip at the outside wheels/tires - Graham MacNeil ©

TBR is similar. It's the ratio between the torque sent to the outside wheel relative to the inside wheel. A 2:1 TBR, for instance, provides two times as much torque to the outside wheel, or 67% of total and the inside wheel gets 33%. That means you can send more torque to the outside wheel to take advantage of more grip while simultaneously reducing torque at the inside wheel with less grip to avoid slipping.

LSD's Can Get Confused

One tricky disadvantage to the traditional LSD, though, is losing grip on snow, ice, or heavy rain. With a limited slip diff, you are more likely to get moving because you can better utilize available grip at the driven wheels. But once you are moving, the diff could get confused by road conditions.

Because the diff is "dumb" and just sends power away from a slipping wheel, if you are driving and one wheel begins to slip due to poor road conditions (i.e. hydroplanes, hits a patch of ice, etc.), the other wheel gets more power. That extra power could cause the OTHER wheel to slip, which results in the first wheel that was previously slipping then got limited to get more power again. This results in back and forth shifting of power that could cause the car to "fish tail" and make it more difficult to catch the back end if it starts to go.

E46 BMW 330i at Atlantic Motorsport Park - Graham MacNeil ©

Another way LSD's can get confused is slow-pace driving out of a corner. They can't tell the difference between turning and a slipping wheel. If you're going around a turn, the outside wheel is spinning faster than the inside wheel because it has to "travel further" as a result of taking the longer way around the turn (explained in more detail in the last post linked above). But from the diff's perspective, one wheel is faster (outside) and one wheel is slower, more difficult to spin (inside). The diff will start to lock up in response, thereby transferring torque to the inside wheel. That means the inside wheel, which is the unloaded low-grip wheel, gets more torque, the opposite of what you want.

It's a small amount and LSD's are designed to minimize lock up at small speed variances like that for this very reason, but it's still there. This, combined with the small amount of locking (resisting speed variation) results in LSD's increasing understeer unless driven hard, all else being equal. Fortunately, they start to work properly on a track once you feed in more power. As you feed in more power, you start to overpower the inside wheel. As you overpower it, it begins to slip. Eventually, the inside wheel speed will exceed the outside. But since you have a limited slip diff, it is progressively locking to minimize that and, this time, it's transferring power to the outside wheel.

Good, so how does it help?

Imagine that you've just nailed the apex of the corner and you're starting to feed in the power as you unwind the steering wheel. Your outside wheel is loaded due to weight transfer and your inside is unloaded. What you want is give more power to the outside since it has more grip and less to the inside. An open diff can't do that but a limited slip diff can.

2nd gen WRX STI showing unloaded low-grip inside rear wheel midcorner - Kevin Doubleday ©

As you feed in the power and the inside wheel begins to slip, the diff progressively locks. This forces more power away from the inside wheel so it doesn't continue to slip and sends that power to the outside wheel where you can use it. You can go faster by using more power earlier in corner exit and, due to limiting inside wheel spin, you won't lose traction as easily which means you can better maintain your available grip. The higher the bias ratio mentioned earlier, the more the diff can lock. More lock means the diff can send more power away from the inside wheel and to the outside wheel.

So more lock is better?

You don't always want the highest number possible. A higher number does let you get back on the power earlier with more power sent to the outside wheel. And limiting slip of a low traction wheel is great, as it can be the difference between accelerating and backing off the power when exiting a corner on a track. The downside to more lock up is understeer on a RWD car, even when the diff is working as intended. This is a result of three factors:

1. Locking up to any degree provides less speed differentiation than no lock up at all, which we've established is required for the car to turn. If you've ever driven a 4x4 with diff locks on dry pavement, you'll know exactly what I mean (better not do that, though, because it puts a lot of stress on drivetrain components).

2. Putting more power down means more weight transfer to the rear end, which results in less grip at the front end. Less grip in the front is more understeer. If you've ever driven a 911, understeer due to rear weight transfer is very pronounced since most of the weight is at the back to start with, but it's true for all cars.

3. You can maintain your grip for longer due to no inside wheel slip. If the rear axle can hold on for longer, you'll increase understeer.

The BMW M2 comes with a limited slip diff (electronic) - BMW ©

With that said, a car without a limited slip diff will almost always be slower than a car with one. This is because you can get back on the power much sooner and more aggressively with a limited slip diff , which will let you shave a lot of time. As a result, you'll find that most good RWD cars actually have LSD's, such as Corvettes, BMW's, Camaros, Mustangs, Subaru BRZ/Toyota 86, Miatas, etc.

The only exception may be a low power momentum RWD car that has more traction than power and, therefore, could not excessively spin its inside wheel if it wanted to. You make the most of it by maximizing corner speed everywhere.

Know Your Car and Your Track

And there are ways to get around the understeer. You can tune the suspension to reduce that understeer so you typically only notice the understeer on a car that had a limited slip diff added but is otherwise unchanged. As with all things in motorsports, you need to learn your car, learn your setup, and learn your track. A power track could allow you to better take advantage of high amounts of lockup. A track with a bunch of high speed sweepers might lend itself to maximizing corner speed and minimizing understeer, plus high speed corners bring downforce into the equation so you could increase your grip to make up for lower lockup and traction performance.

It gets even better on a FWD car, since you only have the first two factors (i.e. lock up and weight transfer) against you. The third is actually helping you. LSDs on the front let you maintain grip for longer on the front axle, which is less understeer. And even before the diff is working as intended, torque transferred to either front wheel generates a positive steering moment. That means a limited slip diff typically curbs understeer on a FWD car even if all else stays the same, especially if it's a high horsepower car. The one caveat is that the axle locking can make it difficult to steer, if aggressive.


Of course, as with every technology, engineers are always working to improve it. Limited slip differentials are no exception and there are several other ways to limit slip and distribute torque that address the downsides of a traditional LSD. Stay tuned for the next post, where I will explain other LSD technologies including gear-type, electronic (like the BMW M2 pictured), brake-based, and torque vectoring!

Follow Ram's Eye The Track Guy on Facebook and Instagram!


Does An Aftermarket Grille Really Increase Airflow?
I put a Saleen S281 grille to the test to answer that question.

Stock Suspension S197 Mustang With Square 305/30/19's
What you need to fit a proper size square tire setup.

How Limited Slip Diffs Make You Faster on Track
What you need to know about how they put power down and pros and cons.

Can Telemetry Explain Schumacher's Talent?
A comparison between Schumacher's and then team mate Herbert's data.

Cayman GT4 Track Review
The first Cayman with proper (911-challenging) power.

Is an EcoBoost Mustang any good on Track?
Two days at the track in a Mustang short 4 cylinders.

2016 BMW M4 DCT Track Review
It's quick (properly quick). But is it fun?

Can a stock Golf Diesel handle a Track Day?
Not your every day track beater.

🔥 Most Visited This Week

Michelin Pilot Super Sports vs Firestone Firehawk Indy 500 - Street Review

I've been a huge fan of Michelin PSS tires and exclusively bought them for the Mustang over the last four years. So how did I end up here? This year, I was hugely interested in trying an "R-comp" tire. I had my eyes set on Bridgestone Potenza RE-71R's for two simple reasons: price and reputation. Although not a true "R-comp" tire on paper, it performs like one by the account of every single test and review I've read (down to wear rates...). They seem like they're easily the most affordable (from a big brand) R-comp tire and combine that with a reputation for having tons of grip, it was an easy top contender. I had my concerns, though. For one, I'm told and have read that they are an autox tire, not really designed for high speed, pressure, and temps associated with open track. For another, the Mustang is a heavy car (as far as track cars are concerned) being roughly 3,800 lb. (including driver), which will amplify the unwanted open track loads.…

Bridgestone Potenza RE-71R Track Review

For better or for worse, I have heard and read so much about RE-71R's. Everyone swears by the grip but complains about the wear. Generally speaking, the pros are:

1. They grip as well or better than most R comps.
2. They don't wear as quickly as R comps if driven occasionally on the street.
3. They work better in the rain than R comps.

The cons were limited to overheating quickly when used on track (being an autocross tire) and wearing too fast on heavy cars like mine.

In the popular 200 TW category, they are faster than the popular Hankook RS-4's and BFGoodrich Rival S's according to published Tire Rack Tests. According to plenty of reviews, they are also faster than well established R comps like R888R's (which don't seem to work too well on heavy cars anyway) and the venerable NT01's. But I was still hesitant for a while until I talked to a tire tech support gentleman at Tire Rack who has gone faster on RE-71R's than NT01s. In a Mustang (his own, not…

Stock Suspension S197 Mustang With Square 305/30/19's

If you've had any doubts about whether or not they will fit, fear not! You absolutely can run square 305/30/19's. I had a lot of doubts before pulling the trigger, even more so when the wheels where on the car. The tires do poke out a bit and I figured rubbing is all but guaranteed at full compression but I couldn't be happier I trusted APEX and those on here who have run it.

Here's what you need:

1. Camber plates: I have MM C/C plates and they are maxed out at -2.3 deg with the stock struts. I have been running them for years with many track days without issue.

2. 1"/25 mm spacer: I have Motorsport-tech 1" spacers and they look like high quality units. There is maybe a 1/4 inch clearance in the back so you can't go any narrower than 25 mm. and you want Design 2.

3. Elongated studs: your best bet is to get the FPP hubs with elongated studs instead of reusing the old one. Bearings are consumables anyway so…

Koenigsegg Gamera: 4 Seats, 4WD, 3 Cylinders, and 1700 hp

Meet the Koenigsegg Gamera. This car brings so many firsts, not just to Koenigsegg, but also to the entire automotive industry. For Koenigsegg, it is the first car to have 4 seats, the first to have 3 cylinders and the first to have all wheel drive. Koenigsegg calls it the world's first mega-GT (gran touring) car, and I think they're right. For the world, it brings the first four seater, mid-engine, hyper car. Koenigsegg says it wants to bring the "exciting performance traits of a mid-engine two-seater megacar with the practicalities of a four-seater car with more luggage space" so the experience can be shared with "family and friends." Clearly, I need better friends...

With 1,700 hp on tap, you are sure to impress those lucky enough to be your family and friends if you own one of those. Of course, a three cylinder engine with 1,700 hp is likely to have all the driveability and flexibility of a farm tractor so Koenigsegg doesn't rely on it for all the …