Skip to main content

Why an Open Differential Doesn't Work on Track

C7 Corvette Grand Sport... doing a burnout with a proper diff - Graham MacNeil ©

I wrote a tech post comparing various open and limited slip diffs for a comparison and I found that a lot of people were asking questions. To simplify and make it easier to read, I decide to break them up for a future tech article about handling. Make sure to stay tuned for two posts on limited slip diffs this week!.


A differential's job is to allow two wheels on the same axle (or two axles in a 4WD drivetrain) to spin at different speeds so a car could smoothly go around a corner. Why do the wheels need to spin at different speeds? Each wheel on a car has to travel a different path to reach the end of the turn. You can see that for yourself every time you drive on snow covered roads or muddy trails.

Four different tracks by four wheels/tires on one car going around a turn - Rams Eye The Track Guy ©

If you take a turn, you'll see that each wheel/tire leaves a separate track (arc) on the road, which means they all have to travel different distances. And since they also have to travel different distances in the same period of time - the time it takes the car to go through the corner - each wheel has to travel at a different speed throughout the turn.


The video below has been used countless times to demonstrate how a diff works and, although made by General Motors over 80 years ago, it is still one of the best videos I've found that explains very visually how a differential works. It's a long video; fast forward to about 2:00 in (from 2:00 to 2:22 is the problem.differentials solve and explained above and 3:40-6:35 is the working principle/mechanism of a diff).

The diff was a fantastic innovation and solved the problem of two powered wheels traveling at different speeds on the same axle. But it's not without its faults, especially when it comes to demanding conditions such as driving on snow/ice or high performance driving (and ultimately racing).


The main limitation with open diffs is that they allow one wheel to spin endlessly, even if the other is completely stationary. The demonstration at 5:30 into the video shows that. If you're on the road with one wheel on tarmac/asphalt and another on ice, one wheel and tire "grips" the pavement (pun intended) due to higher grip level on tarmac compared to ice for the other tire. In other words, if one wheel has higher grip or traction, it's harder for the diff to turn, much like being held still in the video relative to the other one, and instead, the diff will turn the other wheel since it is easier to turn.

That problem isn't just limited to one wheel spinning endlessly while the other is stationary, though. An open diff transfers virtually equal amounts of torque to both wheels. That means that the wheel with little traction will dictate how much torque the wheel with a lot of traction gets. If you give more power (and therefore torque) than the low traction wheel can hold, it will start spinning, because it is easier to spin. This is why if you have a FWD or RWD car with an open diff on snow or ice, some people call it one wheel drive because it only takes one wheel without traction to render the whole car stuck.


Once a wheel is spinning (excessively), it can't do much useful work, meaning it can't transfer much power to get you moving or accelerating. This is evident if you watch someone do a burnout, where you can see that the tires are spinning endlessly but the car is barely moving. It will take a very little amount of power to keep an already spinning wheel spinning. Now think about that: that little amount of power that it will take to keep a wheel spinning while the car is barely moving is the maximum you can transfer to the other wheel as well because the diff transfers equal amounts of torque to both wheels.

North American 8th gen Honda Civic Si burn-out (demonstrating how little power it takes to spin a tire...) - Graham MacNeil ©


If you have uneven available grip between two wheels on the same axle, you have one wheel with higher torque carrying/transfer capacity than the other. When that happens in an open diff with no way to unevenly distribute torque, you can more easily overpower the low traction wheel. If you overpower it, it will start spinning. If it starts spinning, it is contributing very little to your longitudinal grip (forward/backward) or lateral grip (sideways). Moreover, the wheel with a lot of traction and, therefore, good torque carrying/transfer capacity is underutilized, because it won't get any more torque than that which is transferred to the low grip wheel (not much).

Nissan 280Z at Atlantic Motorsport Park locking front outside tire - Graham MacNeil ©

The result is limiting how much power you can use to move (or accelerate) as well as making it easier to reduce your available grip by spinning the low-grip wheel, which still contributes to the car's overall lateral and longitudinal grip available. Once it starts spinning, it can't do much. If that happens at the rear axle (RWD), that spinning low-traction wheel means less grip at the rear end and more likely to oversteer. On the front axle, it's understeer.


How does this play out on a track? When you're going around a corner, the inside wheel is unloaded because weight is transferred to the outside wheel. That means the inside wheel has less grip, which means it can transfer less torque than the outside. If you exceed the maximum it can transfer, it will spin. If it starts to spin (excessively), it will have even less grip, so you'll have to use even less power and your corner speed has to come down since one of the tires now has less grip due to excessive spin. Moreover, the outside wheel - which is loaded due to weight transfer and can transfer a lot more torque - is underutilized.

In short, an open diff under-utilizes available traction because it can't unevenly distribute torque. In other words, you can't use as much power as the total that the two tires could transfer because the grip at one wheel/tire is underutilized. It also makes it easier to spin a wheel that has relatively less grip than the other it shares an axle with, making it more likely than you're run out of grip and understeer or oversteer.

Fortunately, you aren't out of luck since there are many solutions for this problem. Stay tuned for a follow up to this!

Follow Ram's Eye The Track Guy on Facebook and Instagram!


Does An Aftermarket Grille Really Increase Airflow?
I put a Saleen S281 grille to the test to answer that question.

Stock Suspension S197 Mustang With Square 305/30/19's
What you need to fit a proper size square tire setup.

How Limited Slip Diffs Make You Faster on Track
What you need to know about how they put power down and pros and cons.

Can Telemetry Explain Schumacher's Talent?
A comparison between Schumacher's and then team mate Herbert's data.

Cayman GT4 Track Review
The first Cayman with proper (911-challenging) power.

Is an EcoBoost Mustang any good on Track?
Two days at the track in a Mustang short 4 cylinders.

2016 BMW M4 DCT Track Review
It's quick (properly quick). But is it fun?

Can a stock Golf Diesel handle a Track Day?
Not your every day track beater.

🔥 Most Visited This Week

Michelin Pilot Super Sports vs Firestone Firehawk Indy 500 - Street Review

I've been a huge fan of Michelin PSS tires and exclusively bought them for the Mustang over the last four years. So how did I end up here? This year, I was hugely interested in trying an "R-comp" tire. I had my eyes set on Bridgestone Potenza RE-71R's for two simple reasons: price and reputation. Although not a true "R-comp" tire on paper, it performs like one by the account of every single test and review I've read (down to wear rates...). They seem like they're easily the most affordable (from a big brand) R-comp tire and combine that with a reputation for having tons of grip, it was an easy top contender. I had my concerns, though. For one, I'm told and have read that they are an autox tire, not really designed for high speed, pressure, and temps associated with open track. For another, the Mustang is a heavy car (as far as track cars are concerned) being roughly 3,800 lb. (including driver), which will amplify the unwanted open track load

Stock Suspension S197 Mustang With Square 305/30/19's

If you've had any doubts about whether or not they will fit, fear not! You absolutely can run square 305/30/19's. I had a lot of doubts before pulling the trigger, even more so when the wheels where on the car. The tires do poke out a bit and I figured rubbing is all but guaranteed at full compression but I couldn't be happier I trusted APEX and those on here who have run it. Here's what you need: 1. Camber plates: I have MM C/C plates and they are maxed out at -2.3 deg with the stock struts. I have been running them for years with many track days without issue. 2. 1"/25 mm spacer: I have Motorsport-tech 1" spacers and they look like high quality units. There is maybe a 1/4 inch clearance in the back so you can't go any narrower than 25 mm. and you want Design 2. Motorsport Tech 1" Mustang Hub-centric Spacers 3. Elongated studs: your best bet is to get the FPP hubs with elongated studs

GTR vs Evo X vs STI: which has the best AWD system?

A few weeks ago, I made a post explaining  mainstream AWD system types and how they compare , pros and cons, etc. including some simple diagrams to show where the power goes and how much. As promised, this post will focus on specific cars and what AWD systems they use, especially ones that that have more or less been defined by their AWD systems, and the best place to start may be with a bombshell; the Nissan GT-R. Nissan GT-R (R35) The GT-R has built a reputation around having monster traction and very approachable performance, thanks to its AWD system - Advanced Total Traction Engineering System for All-Terrain (ATTESA) - and what it can do for you. But the GT-R doesn't actually use the most mechanically sophisticated type of AWD systems discussed in the previous article, namely a "true" AWD with a centre differential. Instead, it uses a clutch pack to transfer power. RWD-based clutch-type AWD schematic - Rams Eye The Track Guy © The R32, R33, and R34 Sky

All Mainstream AWD and 4WD Systems Compared and Explained

Mitsubishi Evo X GSR at Atlantic Motorsport Park - Kevin Doubleday  © If you live in Canada or the US, you'll find that plenty of people hold sacred the terms '4x4' and '4WD' to describe a 'true 4x4', where you have a butch transfer case with a low speed, perhaps a body on frame chassis, and ideally a solid axle or two. I'm not sure how that translates to the rest of the world. My extensive research into the motoring industry in Europe (which exclusively consists of watching Top Gear and The Grand Tour...) concluded that most people across the pond simply refer to any vehicle that is capable of sending any power to all four wheels as a 4WD vehicle, further muddying the waters. Where I grew up, 4x4 was more or less synonymous with 'Jeep' so that's not much help either. However, despite all various systems attempting to do the same sort of thing - distribute power between all four wheels instead of two - not all systems are created equal,